On the spinor representation of surfaces in Euclidean 3-space ${ }^{\star}$

Thomas Friedrich ${ }^{1}$
Humboldt-Universität zu Berlin, Institut für Reine Mathematik, Ziegelstraße 13a, D-10099 Berlin, Germany

Received 30 December 1997; received in revised form 18 March 1998

Abstract

The aim of the present paper is to clarify the relationship between immersions of surfaces and solutions of the Dirac equation. The main idea leading to the description of a surface M^{2} by a spinor field is the observation that the restriction to M^{2} of any parallel spinor ψ on \mathbb{R}^{3} is a non-trivial spinor field on M^{2} of constant length which is a solution of the inhomogeneous Dirac equation. Vice versa, any solution of the equation $D(\psi)=H \cdot \psi$ of constant length defines a symmetric endomorphism satisfying the Gauss- and Codazzi equations, i.e. an isometric immersion of M^{2} into the 3-dimensional Euclidean space. © 1998 Elsevier Science B.V. All rights reserved.

Subj. Class.: Differential geometry
1991 MSC: 53C40; 58 G 30
Keywords: Dirac equation; Surfaces in Euclidean spaces

1. Introduction

The Weierstraß formula describes a conformal minimal immersion of a Riemann surface M^{2} into the 3-dimensional Euclidean space \mathbb{R}^{3}. It expresses the immersion in terms of a holomorphic function g and a holomorphic 1 -form μ as the integral

$$
f=\operatorname{Re}\left(\int\left(1-g^{2}, \mathrm{i}\left(1+g^{2}\right), 2 g\right) \mu\right): M^{2} \rightarrow \mathbb{R}^{3}
$$

[^0]On the other hand let us consider the spinor bundle S over M^{2}. This 2-dimensional vector bundle splits into

$$
S=S^{+} \oplus S^{-}=\Lambda^{0} \oplus \Lambda^{1,0}
$$

Therefore the pair (g, μ) can be considered as a spinor field φ on the Riemann surface. The Cauchy-Riemann equation for g and μ is equivalent to the Dirac equation

$$
D(\varphi)=0 .
$$

The choice of the Riemannian metric in the fixed conformal class of M^{2} is not essential since the kernel of the Dirac operator is a conformal invariant.

A similar description for an arbitrary surface $M^{2} \hookrightarrow \mathbb{R}^{3}$ is possible and has been pointed out probably for the first time by Eisenhardt (1909). This representation of any surface in \mathbb{R}^{3} by a spinor field φ on M^{2} satisfying the Dirac equation

$$
\begin{equation*}
D(\varphi)=H \varphi \tag{*}
\end{equation*}
$$

involving the mean curvature H of the surface has been used again in some recent papers (see [5,8,10-12]). However, the mentioned authors describe the relationship between surfaces in \mathbb{R}^{3} and solutions of Eq. (*) in local terms in order to get explicit formulas. The aim of the present paper is to clarify the mentioned representation of surfaces in \mathbb{R}^{3} by solutions of the equation $D(\varphi)=H \varphi$ in a geometrically invariant way. It turns out that the main idea leading to the description of a surface by a spinor field φ is simple: Consider an immersion $M^{2} \hookrightarrow \mathbb{R}^{3}$ and fix a parallel spinor Φ on \mathbb{R}^{3}. Then the restriction $\varphi=\Phi_{\mid M^{2}}$ of Φ to the surface is (with respect to the inner geometry of M^{2}) a non-trivial spinor field on M^{2} and defines a spinor φ^{*} of constant length which is a solution of the inhomogeneous Dirac equation

$$
D\left(\varphi^{*}\right)=H \varphi^{*} .
$$

Conversely, given a solution φ of Eq. (*) with constant length there exists a symmetric endomorphism $E: T\left(M^{2}\right) \rightarrow T\left(M^{2}\right)$ such that the spinor field satisfies a "twistor type equation"

$$
\nabla_{X} \varphi=E(X) \cdot \varphi
$$

The resulting integrability conditions for the endomorphism E are exactly the Gauß and Codazzi equations. As a consequence, the solution φ of the Dirac equation

$$
D(\varphi)=H \varphi, \quad|\varphi| \equiv \text { const }>0
$$

yields an isometric immersion of M^{2} into \mathbb{R}^{3}. In a similar way one obtains the description of conformal immersions using the well-known formula for the transformation of the Dirac operator under a conformal change of the metric (see [2]).

2. The Dirac operator of a surface immersed into a Riemannian 3-manifold

Let Y^{3} be a 3-dimensional oriented Riemannian manifold with a fixed spin structure and denote by M^{2} an oriented surface isometrically immersed into Y^{3}. Because the normal bundle of M^{2} is trivial, the spin structure of Y^{3} induces a spin structure on the Riemannian surface M^{2}. The spinor bundle S of the 3-manifold Y^{3} yields by restriction the spinor bundle of the surface M^{2}. Over M^{2} this bundle decomposes into

$$
S=S^{+} \oplus S^{-}
$$

where the subbundles $S^{ \pm}$are defined by (see [3])

$$
S^{ \pm}=\left\{\varphi \in S: \mathrm{i} \cdot e_{1} \cdot e_{2} \cdot \varphi= \pm \varphi\right\}
$$

Here $\left\{e_{1}, e_{2}\right\}$ denotes an oriented orthonormal frame in $T\left(M^{2}\right)$ and $X \cdot \varphi$ means the Clifford multiplication of a spinor $\varphi \in S$ by a vector $X \in T\left(M^{2}\right)$. Since in the 3-dimensional spin representation the relation

$$
e_{1} \cdot e_{2}=e_{3}
$$

holds, we can replace the Clifford product $e_{1} \cdot e_{2}$ by the normal vector \mathbf{N} of $M^{2} \hookrightarrow Y^{3}$:

$$
S^{ \pm}=\{\varphi \in S: \mathbf{i} \cdot \mathbf{N} \cdot \varphi= \pm \varphi\}
$$

Consider a spinor field Φ defined on the 3-manifold Y^{3}. Its restriction $\varphi=\Phi_{\mid M^{2}}$ is a spinor field defined on M^{2} and decomposes therefore into $\varphi=\varphi^{+}+\varphi^{-}$with

$$
\varphi^{+}=\frac{1}{2}(\varphi+\mathrm{i} \mathbf{N} \cdot \varphi), \quad \varphi^{-}=\frac{1}{2}(\varphi-\mathrm{i} \mathbf{N} \cdot \varphi)
$$

We denote by $\nabla^{Y^{3}}$ and $\nabla^{M^{2}}$ the covariant derivatives in the spinor bundles on Y^{3} and M^{2} respectively. For any vector $X \in T\left(M^{2}\right)$ we have the well-known formula (see [2])

$$
\nabla_{X}^{Y^{3}}(\Phi)=\nabla_{X}^{M^{2}}(\varphi)-\frac{1}{2}\left(\nabla_{X} \mathbf{N}\right) \cdot \mathbf{N} \cdot \varphi
$$

The endomorphism $X \rightarrow\left(\nabla_{X} \mathbf{N}\right)$ coincides with the second fundamental form II : $T\left(M^{2}\right) \rightarrow T\left(M^{2}\right)$ of the submanifold $M^{2} \hookrightarrow Y^{3}$. Since II is symmetric the Clifford product $e_{1} \cdot \mathrm{II}\left(e_{1}\right)+e_{2} \cdot \mathrm{II}\left(e_{2}\right)$ is a scalar and equals $(-2 H)$ where H denotes the mean curvature of the surface M^{2}. The Dirac operator D of M^{2} defined by the formula

$$
D(\varphi)=e_{1} \cdot \nabla_{e_{1}}^{M^{2}} \varphi+e_{2} \cdot \nabla_{e_{2}}^{M^{2}} \varphi
$$

can now be expressed by the covariant derivative $\nabla^{Y^{3}}$ and the mean curvature vector:

$$
e_{1} \cdot \nabla_{e_{1}}^{Y^{3}}(\Phi)+e_{2} \cdot \nabla_{e_{2}}^{Y^{3}}(\Phi)=D(\varphi)+H \cdot \mathbf{N} \cdot \varphi
$$

Suppose that the spinor field Φ on Y^{3} is a real Killing spinor, i.e. there exists a number $\lambda \in \mathbb{R}^{1}$ such that for any tangent vector $\mathbf{T} \in T\left(Y^{3}\right)$ the derivative of Φ in the direction of \mathbf{T} is given by the Clifford multiplication:

$$
\nabla_{\mathbf{T}}^{Y^{3}}(\Phi)=\lambda \cdot \mathbf{T} \cdot \Phi
$$

For the restriction $\varphi=\Phi_{\mid M^{2}}$ we obtain immediately the equation

$$
D(\varphi)=-2 \lambda \varphi-H \cdot \mathbf{N} \cdot \varphi .
$$

Using the decomposition $\varphi=\varphi^{+}+\varphi^{-}$the last equation is equivalent to the pair of equations

$$
D\left(\varphi^{+}\right)=(-2 \lambda-\mathrm{i} H) \varphi^{-}, \quad D\left(\varphi^{-}\right)=(-2 \lambda+\mathrm{i} H) \varphi^{+}
$$

We discuss two special cases.
Proposition 1. Let M^{2} be a minimal surface in Y^{3}. Then the restriction $\varphi=\Phi_{\mid M^{2}}$ of any real Killing spinor Φ on Y^{3} is an eigenspinor of constant length on the surface M^{2} :

$$
D(\varphi)=-2 \lambda \varphi
$$

On the other hand, suppose that Φ is a parallel spinor $(\lambda=0)$ on Y^{3}. Then we obtain

$$
D\left(\varphi^{+}\right)=-\mathrm{i} H \varphi^{-}, \quad D\left(\varphi^{-}\right)=\mathrm{i} H \varphi^{+}
$$

If we introduce the spinor field $\varphi^{*}=\varphi^{+}-\mathrm{i} \varphi^{-}$, a simple calculation shows

$$
D\left(\varphi^{*}\right)=H \varphi^{*}
$$

The spinor field φ^{*} is given by

$$
\begin{aligned}
\varphi^{*} & =\varphi^{+}-\mathrm{i} \varphi^{-}=\frac{1}{2}(\varphi+\mathrm{i} \cdot \mathbf{N} \cdot \varphi)-\frac{1}{2} \mathrm{i}(\dot{\varphi}-\mathrm{i} \cdot \mathbf{N} \cdot \varphi) \\
& =\frac{1}{2}(1-\mathrm{i}) \varphi+\frac{1}{2}(-1+\mathrm{i}) \cdot \mathbf{N} \cdot \varphi .
\end{aligned}
$$

Moreover, the length of φ^{*} is constant. This construction yields the following result.
Proposition 2. Let Φ be a parallel spinor field ciefined on the 3-manifold Y^{3} and denote by $\varphi=\Phi_{\mid M^{2}}$ its restriction to M^{2}. Define the spinor field φ^{*} on M^{2} by the formula

$$
\varphi^{*}=\frac{1}{2}(1-\mathrm{i}) \varphi+\frac{1}{2}(-1+\mathrm{i}) \cdot \mathbf{N} \cdot \varphi
$$

Then φ^{*} is a spinor field of constant length on M^{2} satisfying the Dirac equation

$$
D\left(\varphi^{*}\right)=H \varphi^{*}
$$

where H denotes the mean curvature.
Remark 3. The map $\Phi \longmapsto \varphi^{*}$ associating to any parallel spinor Φ on Y^{3} a solution of the equation $D\left(\varphi^{*}\right)=H \varphi^{*}$ is injective.

Remark 4. We can apply the above-mentioned formulas not only for Killing spinors. Indeed, for any spinor field Φ we have

$$
D_{Y^{3}}(\Phi)=D(\varphi)+H \cdot \mathbf{N} \cdot \varphi+\mathbf{N} \cdot\left(\nabla_{\mathbf{N}}^{Y^{3}} \Phi\right)
$$

where $D_{Y^{3}}$ is the Dirac operator of the 3-manifold Y^{3}. Suppose there exists a function κ : $M^{2} \rightarrow \mathbb{C}$ such that the normal derivative $\left(\nabla_{\mathbf{N}}^{Y^{3}} \Phi\right)$ of the spinor field Φ is described by κ :

$$
\left(\nabla_{\mathbf{N}}^{Y^{3}} \Phi\right)=\kappa \Phi
$$

Then we obtain

$$
D_{Y^{3}}(\Phi)=D(\varphi)+(H+\kappa) \mathbf{N} \cdot \varphi .
$$

This formula (in arbitrary dimension) has been used for the calculation of the spectrum of the Dirac operator on hypersurfaces of the Euclidean space (see [1,13,14]).

3. Solutions of the Dirac equation with potential on Riemannian surfaces

Let (M^{2}, g) be an oriented, 2-dimensional Riemannian manifold with spin structure. $I I: M^{2} \rightarrow \mathbb{R}^{1}$ denotes a given smooth, real-valued function defined on the surface. In this part we study spinor fields φ on M^{2} that are solutions of the differential equation

$$
D(\varphi)=H \varphi
$$

If we decompose the spinor field into $\varphi=\varphi^{+}+\varphi^{--}$according to the splitting $S=S^{+} \oplus S^{-}$ of the spinor bundle the equation we want to study is equivalent to the system

$$
D\left(\varphi^{+}\right)=H \varphi^{-}, \quad D\left(\varphi^{-}\right)=H \varphi^{+}
$$

To any solution φ of this equation we associate two forms $F_{ \pm}$defined for pairs $X, Y \in$ $T\left(M^{2}\right)$ of tangent vectors:

$$
F_{+}(X, Y)=\operatorname{Re}\left(\nabla_{X} \varphi^{+}, Y \cdot \varphi^{-}\right) \quad, \quad F_{-}(X, Y)=\operatorname{Re}\left(\nabla_{X} \varphi^{-}, Y \cdot \varphi^{+}\right)
$$

Proposition 5.

(a) $F_{ \pm}$are symmetric bilinear forms on $T\left(M^{2}\right)$,
(b) The trace of $F_{ \pm}$is given by $\operatorname{Tr}\left(F_{ \pm}\right)=-H\left|\varphi^{\mp}\right|^{2}$.

Proof. The symmetry of $F_{ \pm}$is a consequence of the Dirac equation as well as the assumption that H is a real-valued function. Indeed, we have

$$
\begin{aligned}
\operatorname{Re}\left(\nabla_{e_{1}} \varphi^{+}, e_{2} \varphi^{-}\right) & =\operatorname{Re}\left(e_{1} \cdot \nabla_{e_{1}} \varphi^{+}, e_{1} \cdot e_{2} \cdot \varphi^{-}\right) \\
& =\operatorname{Re}\left(H \varphi^{-}-e_{2} \cdot \nabla_{e_{2}} \varphi^{+}, e_{1} \cdot e_{2} \cdot \varphi^{-}\right) \\
& =H \cdot \operatorname{Re}\left(\varphi^{-}, e_{1} \cdot e_{2} \cdot \varphi^{-}\right)+\operatorname{Re}\left(\nabla_{e_{2}} \varphi^{+}, e_{2} \cdot e_{1} \cdot e_{2} \cdot \varphi^{-}\right) \\
& =0+\operatorname{Re}\left(\nabla_{e_{2}} \varphi^{+}, e_{1} \cdot \varphi^{-}\right)
\end{aligned}
$$

Moreover, we calculate the trace of $F_{ \pm}$:

$$
\begin{aligned}
\operatorname{Tr}\left(F_{ \pm}\right) & =\operatorname{Re}\left(\nabla_{e_{1}} \varphi^{ \pm}, e_{1} \cdot \varphi^{\mp}\right)+\operatorname{Re}\left(\nabla_{e_{2}} \varphi^{ \pm}, e_{2} \cdot \varphi^{\mp}\right) \\
& =-\operatorname{Re}\left(D\left(\varphi^{ \pm}\right), \varphi^{\mp}\right)=-H\left|\varphi^{\mp}\right|^{2} .
\end{aligned}
$$

We study now special solutions of the equation $D(\varphi)=H \varphi$, i.e. solutions with constant length $|\varphi| \equiv$ const $\neq 0$. It may happen that the components $\varphi^{ \pm}$have a non-empty zero set.

Proposition 6. Suppose that the spinor field φ defined on the Riemannian surface M^{2} is a solution of the equation

$$
D(\varphi)=H \varphi \quad \text { with } \quad|\varphi| \equiv \text { const } \neq 0 .
$$

Then the forms $F_{ \pm}$are related by the equation

$$
\left|\varphi^{+}\right|^{2} F_{+}=\left|\varphi^{-}\right|^{2} F_{-}
$$

Proof. In case one of the spinors φ^{+}or φ^{-}vanishes at a fixed point $m_{0} \in M^{2}$ the relation between F_{+}and F_{-}is trivial. Otherwise there exists a neighbourhood V of the point $m_{0} \in M^{2}$ such that both spinors φ^{+}and φ^{-}are not zero at any point $m \in V$. The spinors

$$
\frac{e_{1} \cdot \varphi^{-}}{\left|\varphi^{-}\right|}, \quad \frac{e_{2} \cdot \varphi^{-}}{\left|\varphi^{-}\right|}
$$

are an orthonormal base in S^{\prime} with respect to the Euclidean scalar product $\operatorname{Re}(\cdot, \cdot)$. Therefore we obtain (on V)

$$
\begin{aligned}
\nabla_{X} \varphi^{+} & =\operatorname{Re}\left(\nabla_{X} \varphi^{+}, \frac{e_{1} \cdot \varphi^{-}}{\left|\varphi^{-}\right|}\right) \frac{e_{1} \cdot \varphi^{-}}{\left|\varphi^{-}\right|}+\operatorname{Re}\left(\nabla_{X} \varphi^{+}, \frac{e_{2} \cdot \varphi^{-}}{\left|\varphi^{-}\right|}\right) \frac{e_{2} \cdot \varphi^{-}}{\left|\varphi^{-}\right|} \\
& =\frac{1}{\left|\varphi^{-}\right|^{2}}\left\{F_{+}\left(X, e_{1}\right) e_{1}+F_{+}\left(X, e_{2}\right) e_{2}\right\} \cdot \varphi^{-}
\end{aligned}
$$

A similar calculation yields the formula

$$
\nabla_{X} \varphi^{-}=\frac{1}{\left|\varphi^{+}\right|^{2}}\left\{F_{-}\left(X, e_{1}\right) e_{1}+F_{-}\left(X, e_{2}\right) e_{2}\right\} \cdot \varphi^{+}
$$

We multiply the equations by φ^{+}and φ^{-}, respectively, and sum up. Then we obtain

$$
\frac{1}{2} X\left(\left|\varphi^{+}\right|^{2}+\left|\varphi^{-}\right|^{2}\right)=\operatorname{Re}\left(A(X) \varphi^{-}, \varphi^{+}\right)
$$

where the endomorphism $A: T\left(M^{2}\right) \rightarrow T\left(M^{2}\right)$ is defined by

$$
A(X)=\left\{\frac{F_{+}\left(X, e_{1}\right)}{\left|\varphi^{-}\right|^{2}}-\frac{F_{-}\left(X, e_{1}\right)}{\left|\varphi^{+}\right|^{2}}\right\} e_{1}+\left\{\frac{F_{+}\left(X, e_{2}\right)}{\left|\varphi^{-}\right|^{2}}-\frac{F_{-}\left(X, e_{2}\right)}{\left|\varphi^{+}\right|^{2}}\right\} e_{2} .
$$

Since $F_{ \pm}$are symmetric tensors, the endomorphism A is symmetric too. Moreover, the trace of A vanishes:

$$
\operatorname{Tr} A=\frac{1}{\left|\varphi^{-}\right|^{2}} \operatorname{Tr}\left(F_{+}\right)-\frac{1}{\left|\varphi^{+}\right|^{2}} \operatorname{Tr}\left(F_{-}\right)=-H+H=0 .
$$

The length of the spinor field φ is constant. This implies

$$
\operatorname{Re}\left(A(X) \cdot \varphi^{-}, \varphi^{+}\right)=0 .
$$

At any point $m \in V$ of the set V the spinors $\varphi^{\dagger}, \varphi^{-}$are non-trivial. Then the rank of the endomorphisms $A: T\left(M^{2}\right) \rightarrow T\left(M^{2}\right)$ is not greater than 1 . All in all, A is symmetric, $\operatorname{Tr}(A)=0$ and $r g(A) \leq 1$, i.e. $A \equiv 0$.

We now consider the sum

$$
F=F_{+}+F_{-} .
$$

At points with $\varphi^{+} \neq 0$ (or $\varphi^{-} \neq 0$) we have

$$
\frac{F}{|\varphi|^{2}}=\frac{F_{+}+F_{-}}{\left|\varphi^{+}\right|^{2}+\left|\varphi^{-}\right|^{2}}=\frac{\left(\left|\varphi^{-}\right|^{2} /\left|\varphi^{+}\right|^{2}+1\right) F_{-}}{\left|\varphi^{+}\right|^{2}+\left|\varphi^{-}\right|^{2}}=\frac{F_{-}}{\left|\varphi^{+}\right|^{2}}
$$

as well as

$$
\frac{F}{|\varphi|^{2}}=\frac{F_{+}+F_{-}}{\left|\varphi^{+}\right|^{2}+\left|\varphi^{-}\right|^{2}}=\frac{\left(1+\left|\varphi^{+}\right|^{2} /\left|\varphi^{-}\right|^{2}\right) F_{+}}{\left|\varphi^{+}\right|^{2}+\left|\varphi^{-}\right|^{2}}=\frac{F_{+}}{\left|\varphi^{-}\right|^{2}} .
$$

The endomorphism $E: T\left(M^{2}\right) \rightarrow T\left(M^{2}\right)$ given by $g(E(X), Y)=F(X, Y) /|\varphi|^{2}$ is defined at all points of M^{2} and the formulas derived in the proof of Proposition 6 in fact prove the following.

Proposition 7. Let φ be a solution of the differential equation $D(\varphi)=H \varphi$ on a Riemannian surface $\left(M^{2}, g\right)$ with a real-valued function $H: M^{2} \rightarrow \mathbb{R}^{1}$. Suppose that the length $|\varphi| \equiv$ const $\neq 0$ of the spinor field φ is constunt. Then

$$
g(E(X), Y)=\frac{1}{|\varphi|^{2}} \operatorname{Re}\left(\nabla_{X} \varphi, Y \cdot \varphi\right)
$$

defines a symmetric endomorphism $E: T\left(M^{2}\right) \rightarrow T\left(M^{2}\right)$ such that
(a) $\nabla_{X} \varphi^{+}=E(X) \cdot \varphi^{-}, \nabla_{X} \varphi^{-}=E(X) \cdot \varphi^{+}$
(b) $\operatorname{Tr}(E)=-H$.

For a given triple (M^{2}, g, E) of a Riemannian surface and symmetric endomorphism the existence of a non-trivial solution φ of the equation

$$
\nabla_{X} \varphi=E(X) \cdot \varphi
$$

implies certain integrability conditions. It turns out that in this way we obtain precisely the well-known Gauß and Codazzi equations of the classical theory of surfaces in Euclidean 3 -space.

Proposition 8. Let $\left(M^{2}, g\right)$ be a 2-dimensional Riemannian surface with a fixed spin structure and suppose that $E: T\left(M^{2}\right) \rightarrow T\left(M^{2}\right)$ is a symmetric endomorphism. If there exists a non-trivial solution of the equation

$$
\nabla_{X} \varphi=E(X) \cdot \varphi, \quad X \in T\left(M^{2}\right)
$$

then

(a) $\left(\right.$ Codazzi equation): $\nabla_{X}(E(Y))-\nabla_{Y}(E(X))-E([X, Y])=0$.
(b) (Gauß equation): $\operatorname{det}(E)=\frac{1}{4} G$, where G is the Gaussian curvature of $\left(M^{2}, g\right)$.

Proof. We prove the two equations in a way similar to the derivation of the integrability conditions for the Riemannian metric in case the space admits a Killing spinor (see [2]). We differentiate the equation

$$
\nabla_{X} \varphi=E(X) \cdot \varphi
$$

and then we calculate the curvature tensor R^{S} of the spinor bundle S :

$$
\begin{aligned}
R^{S}(X, Y) \varphi= & \nabla_{X} \nabla_{Y} \varphi-\nabla_{Y} \nabla_{X} \varphi-\nabla_{[X, Y]} \varphi \\
= & \left\{\nabla_{X}(E(Y))-\nabla_{Y}(E(X))-E([X, Y\rfloor)+E(Y) E(X)\right. \\
& -E(X) E(Y)\} \cdot \varphi .
\end{aligned}
$$

On the other side, the curvature tensor $R^{S}: S \rightarrow S$ is given by the formula

$$
R^{S}\left(e_{1}, e_{2}\right)=\frac{1}{2} R_{1212} e_{1} \cdot e_{2}
$$

Denote by $A(X, Y)$ the differential of E :

$$
A(X, Y)=\nabla_{X}(E(Y))-\nabla_{Y}(E(X))-E([X, Y])
$$

A simple algebraic calculation in the spin representation then leads to the equations

$$
\begin{aligned}
-A\left(e_{1}, e_{2}\right) \varphi^{-} & =\left(2 \operatorname{det}(E)+\frac{R_{1212}}{2}\right) \mathrm{i} \varphi^{+} A\left(e_{1}, e_{2}\right) \varphi^{+} \\
& =\left(2 \operatorname{det}(E)+\frac{R_{1212}}{2}\right) \mathrm{i} \varphi^{-}
\end{aligned}
$$

where $\left\{e_{1}, e_{2}\right\}$ form an orthonormal basis consisting of eigenvectors of E.
We multiply the first equation once by the vector $A(X ; Y)$:

$$
\left\|A\left(e_{1}, e_{2}\right)\right\|^{2} \varphi^{-}=-\left(2 \operatorname{det}(E)+\frac{R_{1212}}{2}\right)^{2} \varphi^{-}
$$

and then we conclude $A(X, Y) \equiv 0$ (Codazzi equation) as well as $\operatorname{det}(E)=-\frac{1}{4} R_{1212}=\frac{1}{4} G$ (Gauß equation).

For a given triple (M^{2}, g, E) consisting of a Riemannian spin surface (M^{2}, g) and of a symmetric endomorphism E we will denote by $\mathcal{K}\left(M^{2}, g, E\right)$ the space of all spinor fields φ satisfying the equation $\nabla_{X} \varphi=E(X) \cdot \varphi$. It is invariant under the quaternionic structure $\alpha: S \rightarrow S$, i.e. $\mathcal{K}\left(M^{2}, g, E\right)$ is a quaternionic vector space (see Section 4). Denote by $(-H)$ the trace of E,

$$
\operatorname{Tr}(E)=-H
$$

Then we have

$$
\mathcal{K}\left(M^{2}, g, E\right) \subset \operatorname{ker}(D-H)
$$

In this part of the paper we proved that any spinor field $\varphi \in \operatorname{ker}(D-H)$ of constant length belongs to one of the subspaces $\mathcal{K}\left(M^{2}, g, E\right)$ for a suitable symmetric endomorphism E, $\operatorname{Tr}(E)=-H$.

Finally, we consider the lengths

$$
L_{+}=\left\|\varphi^{+}\right\|^{2}, \quad L_{-}=\left\|\varphi^{-}\right\|^{2}
$$

of a non-trivial solution $\varphi \in \mathcal{K}\left(M^{2}, g, E\right)$. Using the integrability condition $\operatorname{det}(E)=\frac{1}{4} G$ (i.e. $\|E\|^{2}=H^{2}-\frac{1}{2} G$) as well as the well-known formula $D^{2}=\Delta+\frac{1}{2} G$ for the square D^{2} of the Dirac operator we can derive formulas for $\Delta\left(L_{ \pm}\right)$:

$$
\begin{aligned}
\Delta\left(L_{ \pm}\right) & =2\left(\Delta\left(\varphi^{ \pm}\right), \varphi^{ \pm}\right)-2\left\langle\nabla\left(\varphi^{ \pm}\right), \nabla\left(\varphi^{ \pm}\right)\right\rangle \\
& =2\left(D^{2}\left(\varphi^{ \pm}\right), \varphi^{ \pm}\right)-2\left(\frac{G}{2}\right) \cdot\left\|\varphi^{ \pm}\right\|^{2}-2\|E\|^{2}\left\|\varphi^{\mp}\right\|^{2} \\
& =2\left(H^{2}-\frac{G}{2}\right)\left(L_{ \pm}-L_{\mp}\right)+2 \mathrm{e}\left(\operatorname{grad}(H) \cdot \varphi^{\mp}, \varphi^{ \pm}\right)
\end{aligned}
$$

In particular, if $H \equiv$ const is constant, the difference $u=L_{+}-L_{-}$satisfies the differential equation

$$
\Delta(u)=4\left(H^{2}-\frac{G}{2}\right) u
$$

4. The period form of a spinor with $\nabla_{X} \varphi=E(X) \cdot \varphi$

We consider a spinor field φ on a Riemannian surface (M^{2}, g) such that

$$
\nabla_{X} \varphi=E(X) \cdot \varphi
$$

for a fixed symmetric endomorphism E. The spinor bundle S carries a quaternionic structure $\alpha: S \rightarrow S$ commuting with Clifford multiplication and interchanging the decomposition $S=S^{+} \oplus S^{-}$(see [3]). For any spinor field $\varphi=\varphi^{+}+\varphi^{-}$we define three 1-forms by

$$
\begin{aligned}
& \xi^{\varphi}(X)=2\left(X \cdot \varphi^{+}, \varphi^{-}\right) \\
& \xi_{+}^{\varphi}(X)=\left(X \cdot \varphi^{+}, \alpha\left(\varphi^{+}\right)\right), \quad \xi_{-}^{\varphi}(X)=\left(X \cdot \varphi^{-}, \alpha\left(\varphi^{-}\right)\right) .
\end{aligned}
$$

ξ^{φ} and ξ_{+}^{φ} are $\Lambda^{1,0}$-forms, ξ_{-}^{φ} is a $\Lambda^{0,1}$-form. Indeed, $e_{1} \cdot e_{2}$ acts on S^{+}(on S^{-}) by multiplication by (-i) (by i). Now we obtain

$$
\left(\star \xi^{\varphi}\right)\left(e_{1}\right)=-\xi^{\varphi}\left(e_{2}\right)=2\left(-e_{2} \cdot \varphi^{+}, \varphi^{-}\right)=\left(-\mathrm{i} e_{2} \cdot e_{1} \cdot e_{2} \cdot \varphi^{+}, \varphi^{-}\right)=-\mathrm{i} \xi^{\varphi}\left(e_{1}\right),
$$

i.e. $\star \xi^{\varphi}=-\mathrm{i} \xi^{\varphi}$ holds. A similar calculation gives $\star \xi_{+}^{\varphi}=-\mathrm{i} \xi_{+}^{\varphi}$ and $\star \xi_{-}^{\varphi}=\mathrm{i} \xi_{-}^{\varphi}$. We spiit the 1 -form ξ^{φ} into its real and imaginary part:

$$
\xi^{\psi}=w^{\varphi}+\mathrm{i} \mu^{\varphi}
$$

Moreover, we introduce the 1 -form Ω^{φ}

$$
\Omega^{\varphi}=\xi_{+}^{\varphi}-\xi_{-}^{\varphi}
$$

Then we have:
Proposition 9. Let $\left(M^{2}, g\right)$ be a Riemannian spin surface and $E: T\left(M^{2}\right) \rightarrow T\left(M^{2}\right)$ a symmetric endomorphism of trace $-H$. Suppose the spinor field φ is a solution of the equation $\nabla_{X} \varphi=E(X) \cdot \varphi$. Then
(a) $\mathrm{d} w^{\varphi}=0$.
(b) $\mathrm{d} \mu^{\varphi}=2 H\left\{\left|\varphi^{-}\right|^{2}-\left|\varphi^{+}\right|^{2}\right\} \mathrm{d} M^{2}$.
(c) $\mathrm{d} \Omega^{\varphi}=0$.

Proof. We calculate $\mathrm{d} w^{\varphi}$:

$$
\begin{aligned}
\frac{1}{2} \mathrm{~d} w^{\varphi}(X, Y)= & X\left(\operatorname{Re}\left(Y \cdot \varphi^{+}, \varphi^{-}\right)\right)-Y\left(\operatorname{Re}\left(X \cdot \varphi^{+}, \varphi^{-}\right)\right)-\operatorname{Re}\left([X, Y] \cdot \varphi^{+}, \varphi^{-}\right) \\
= & \{g(X, E(Y))-g(Y, E(X))\}\left|\varphi^{-}\right|^{2} \\
& +\{g(X, E(Y))-g(Y, E(X))\}\left|\varphi^{+}\right|^{2}
\end{aligned}
$$

Since E is symmetric, we obtain $\mathrm{d} w^{\varphi}=0$. A similar calculation shows the formula for $\mathrm{d} \mu^{\varphi}$. For the proof of $\mathrm{d} \Omega^{\varphi}=0$ we first remark that the quaternionic structure $\alpha: S \rightarrow S$ and the hermitian product (\cdot, \cdot) on S are related by

$$
\left(\varphi_{1}, \alpha\left(\varphi_{2}\right)\right)=-\left(\overline{\alpha\left(\varphi_{1}\right), \varphi_{2}}\right) .
$$

Using this formula we can transform $\mathrm{d} \xi_{-}^{\varphi}$ in the following way:

$$
\begin{aligned}
\mathrm{d} \xi_{-}^{\varphi}(X, Y)= & \left(Y \cdot E(X) \cdot \varphi^{+}, \alpha\left(\varphi^{-}\right)\right)+\left(Y \cdot \varphi^{-}, \alpha\left(E(X) \cdot \varphi^{+}\right)\right) \\
& -\left(X \cdot E(Y) \cdot \varphi^{+}, \alpha\left(\varphi^{-}\right)\right)-\left(X \cdot \varphi^{-}, \alpha\left(E(Y) \cdot \varphi^{+}\right)\right) \\
= & -\left(\overline{\left.\alpha\left(Y \cdot E(X) \cdot \varphi^{+}\right), \varphi^{-}\right)}-\left(E(X) \cdot Y \cdot \varphi^{-}, \alpha\left(\varphi^{+}\right)\right)\right. \\
& +\left(\overline{\left.\alpha\left(X \cdot E(Y) \cdot \varphi^{+}\right), \varphi^{-}\right)}\right)+\left(E(Y) \cdot X \cdot \varphi^{-}, \alpha\left(\varphi^{+}\right)\right) \\
= & -\left(E(X) \cdot Y \cdot \varphi^{-}, \alpha\left(\varphi^{+}\right)\right)-\left(E(X) \cdot Y \cdot \varphi^{-}, \alpha\left(\varphi^{+}\right)\right) \\
& +\left(E(Y) \cdot X \cdot \varphi^{-}, \alpha\left(\varphi^{+}\right)\right)+\left(E(Y) \cdot X \cdot \varphi^{-}, \alpha\left(\varphi^{+}\right)\right) .
\end{aligned}
$$

On the other hand we calculate $\mathrm{d} \xi_{+}^{\mu}$:

$$
\begin{aligned}
\mathrm{d} \xi_{+}^{\varphi}(X, Y)= & \left(Y \cdot E(X) \cdot \varphi^{-}, \alpha\left(\varphi^{+}\right)\right)+\left(Y \cdot \varphi^{+}, \alpha\left(E(X) \cdot \varphi^{-}\right)\right) \\
& -\left(X \cdot E(Y) \cdot \varphi^{-}, \alpha\left(\varphi^{+}\right)\right)-\left(X \cdot \varphi^{+}, \alpha\left(E(Y) \cdot \varphi^{-}\right)\right) \\
= & \left(Y \cdot E(X) \cdot \varphi^{-}, \alpha\left(\varphi^{+}\right)\right)-\left(E(X) \cdot Y \cdot \varphi^{+}, \alpha\left(\varphi^{-}\right)\right) \\
& -\left(X \cdot E(Y) \cdot \varphi^{-}, \alpha\left(\varphi^{+}\right)\right)+\left(E(Y) \cdot X \cdot \varphi^{+}, \alpha\left(\varphi^{-}\right)\right) .
\end{aligned}
$$

Finally we obtain

$$
\begin{aligned}
\mathrm{d}\left(\xi_{-}^{\varphi}-\xi_{+}^{\varphi}\right)(X, Y)= & -\left(\{E(X) \cdot Y+Y \cdot E(X)\} \varphi^{-}, \alpha\left(\varphi^{+}\right)\right) \\
& +\left(\{E(Y) \cdot X+X \cdot E(Y)\} \varphi^{-}, \alpha\left(\varphi^{+}\right)\right) \\
= & 2\{g(E(X), Y)-g(E(Y), X)\}\left(\varphi^{-}, \alpha\left(\varphi^{+}\right)\right)
\end{aligned}
$$

and $d\left(\xi_{-}^{\varphi}-\xi_{+}^{\varphi}\right)=0$ follows again by the symmetry of E.
Let us consider the case that (M^{2}, g) is isometrically immersed into the Euclidean space \mathbb{R}^{3}, Φ is a parallel spinor on \mathbb{R}^{3} and the spinor field φ^{*} on M^{2} defined by the formula

$$
\varphi^{*}=\frac{1}{2}\left(\boldsymbol{\Phi}_{\mid M^{2}}+\mathrm{i} \cdot \mathbf{N} \cdot \boldsymbol{\Phi}_{\mid M^{2}}\right)+\frac{1}{2} \mathrm{i}\left(\mathbf{i} \cdot \mathbf{N} \cdot \boldsymbol{\Phi}_{\mid M^{2}}-\boldsymbol{\Phi}_{\mid M^{2}}\right)
$$

(see Section 2). In this case the forms $w^{\varphi^{*}}$ and $\Omega^{\varphi^{*}}$ are given by the expressions

$$
w^{\varphi^{*}}(X)=-\operatorname{Im}(X \cdot \Phi, \Phi), \quad \Omega^{\varphi^{*}}(X)=(X \cdot \Phi, \alpha(\Phi)),
$$

and are exact 1-forms. Indeed, we defined functions $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{1}$ and $g: \mathbb{R}^{3} \rightarrow \mathbb{C}$ by

$$
f(m)=-\operatorname{Im}\langle m \cdot \Phi, \Phi\rangle, \quad g(m)=\langle m \cdot \Phi, \alpha(\Phi)\rangle
$$

and then we have $\mathrm{d} f=w^{\varphi^{*}}, \mathrm{~d} g=\Omega^{\varphi^{*}}$. We remark that f and g describe in fact the isometric immersion $M^{2} \hookrightarrow \mathbb{R}^{3}$ we started with. The 3-dimensional spinor $\Phi \in \Delta_{3}$ defines a real 3-dimensional subspace $\Delta_{3}(\Phi)$ by

$$
\Delta_{3}(\Phi)=\left\{\Psi \in \Delta_{3}: \operatorname{Re}(\Psi, \Phi)=0\right\}
$$

The map $\Psi \rightarrow(-\operatorname{Im}(\Psi, \Phi),(\Psi, \alpha(\Phi)))$ is an isometry between $\Delta_{3}(\Phi)$ and $\mathbb{R}^{1} \oplus \mathbb{C}=\mathbb{R}^{3}$. Clearly, the immersion $M^{2} \hookrightarrow \mathbb{R}^{3}$ is given by

$$
M^{2} \ni m \longmapsto m \cdot \Phi \in \Delta_{3}(\Phi)
$$

i.e. by the functions $f_{\mid M^{2}}$ and $g_{\mid M^{2}}$. With respect to $\mathrm{d}\left(f_{\mid M^{2}}\right)=w^{\varphi^{*}}$ and $\mathrm{d}\left(g_{\mid M^{2}}\right)=\Omega^{\varphi^{*}}$ we obtain a formula for the isometric immersion $M^{2} \hookrightarrow \mathbb{R}^{3}$:

$$
\oint\left(w^{\varphi^{*}}, \Omega^{\varphi^{*}}\right): M^{2} \rightarrow \mathbb{R}^{3}
$$

(Weierstraß representation of the surface.)

In general, we call a solution φ of the differential equation $\nabla_{X} \varphi=E(X) \cdot \varphi$ exact iff the corresponding forms w^{ψ}, Ω^{ψ} are exact 1 -forms. Using the definition

$$
g(\text { Hess }(h)(X), Y)=\frac{1}{2}\left\{g\left(\nabla_{X}(\operatorname{grad}(h)), Y\right)+g\left(X, \nabla_{Y}(\operatorname{grad}(h))\right)\right\}
$$

of the Hessian of a smooth function h defined on a Riemannian manifold we obtain the following result.

Proposition 10. Let $\varphi \in \mathcal{K}\left(M^{2}, g, E\right)$ be an exact solution of the differential equations $\nabla_{X} \varphi=E(X) \cdot \varphi$ with $\mathrm{d} f=w^{\varphi}, \mathrm{d} g=\Omega^{\varphi}$. Then
(a) $\operatorname{Hess}(f)=2\left(\left|\varphi^{+}\right|^{2}-\left|\varphi^{-}\right|^{2}\right) E$.
(b) $|\operatorname{grad} f|^{2}=4\left|\varphi^{+}\right|^{2}\left|\varphi^{-}\right|^{2}$.
(c) $\operatorname{Hess}(g)=-4\left(\varphi^{-}, \alpha\left(\varphi^{+}\right)\right) E$.
(d) $|\operatorname{grad}(g)|^{2}=\left(\left|\varphi^{+}\right|^{2}-\left|\varphi^{-}\right|^{2}\right)^{2}$.

In particular, the determinant of the Hessian of the function f is given by

$$
\operatorname{det}(\operatorname{Hess}(f))=4\left(\left|\varphi^{+}\right|^{2}-\left|\varphi^{-}\right|^{2}\right)^{2} \operatorname{det}(E)=\left(\left|\varphi^{+}\right|^{2}-\left|\varphi^{-}\right|^{2}\right)^{2} G
$$

Here we used Proposition 8, i.e. $\operatorname{det}(E)=\frac{1}{4} G$.
Corollary 11. Let M^{2} be a compact Riemannian spin-manifold and suppose that $\varphi \in$ $\mathcal{K}\left(M^{2}, g, E\right)$ is an exact, non-trivial solution. Then the spinors φ^{+}or φ^{-}vanish at least at one point. Moreover, there exists $m_{0} \in M^{2}$ such that $G\left(m_{0}\right) \geq 0$.

Proof. At a maximum point $m_{0} \in M^{2}$ of f we have

$$
\operatorname{grad}(f)\left(m_{0}\right)=0, \quad \operatorname{det}\left(\operatorname{Hess}(f)\left(m_{0}\right)\right) \geq 0
$$

Recall that for any 2-dimensional Riemannian manifold $\left(M^{2}, g\right)$ and any function h : $M^{2} \rightarrow \mathbb{R}^{1}$ the 2-form

$$
\left\{2 \operatorname{det}(\text { Hess }(h))-|\operatorname{grad}(h)|^{2} G\right\} \mathrm{d} M^{2}=\mathrm{d} \mu^{1}
$$

is exact (see [9, p. 47]). Using this formula for $h=f$ in case of an exact solution $\varphi \in$ $\mathcal{K}\left(M^{2}, g, E\right)$ we obtain

$$
\int_{M^{2}}\left(\left|\varphi^{+}\right|^{2}-\left|\varphi^{-}\right|^{2}\right)^{2} G=2 \int_{M^{2}}\left|\varphi^{+}\right|^{2}\left|\varphi^{-}\right|^{2} G
$$

Corollary 12. Let M^{2} be a compact Riemannian spin manifold and suppose that $\varphi \in$ $\mathcal{K}\left(M^{2}, g, E\right)$ is an exact solution. Then

$$
\int_{M^{2}}\left(|\varphi|^{4}-6\left|\varphi^{+}\right|^{2}\left|\varphi^{-}\right|^{2}\right) G=0
$$

We again discuss the last formula in case of an isometrically immersed surface $M^{2} \hookrightarrow$ \mathbb{R}^{3} and a given parallel spinor Φ on \mathbb{R}^{3}. We apply the integral formula to the spinor $\varphi^{*}=$ $\varphi_{+}^{*}+\varphi_{-}^{*}$ where

$$
\varphi_{+}^{*}=\frac{1}{2}(\Phi+\mathbf{i} \mathbf{N} \cdot \Phi), \quad \varphi_{-}^{*}=\frac{1}{2} \mathbf{i}(-\Phi+\mathbf{i} \cdot \mathbf{N} \cdot \Phi) .
$$

In this case we have

$$
\left|\varphi_{+}^{*}\right|^{2}=\frac{1}{2}|\Phi|^{2}+\frac{1}{2}\langle\mathbf{i} \mathbf{N} \cdot \Phi, \Phi\rangle, \quad\left|\varphi_{-}^{*}\right|^{2}=\frac{1}{2}|\Phi|^{2}-\frac{1}{2}\langle\mathbf{i} \mathbf{N} \cdot \bar{\Phi}, \Phi\rangle
$$

and $(|\Phi| \equiv 1)$ therefore

$$
1-6\left|\varphi_{+}^{*}\right|^{2}\left|\varphi_{-}^{*}\right|^{2}=-\frac{1}{2}+\frac{3}{2}\langle\mathrm{i} \cdot \mathbf{N} \cdot \Phi, \Phi\rangle^{2}
$$

Consequently, the integral formula yields

$$
\int_{M^{2}} G=3 \int_{M^{2}}(\mathbf{i N} \Phi, \Phi)^{2} G
$$

The spinors $\mathrm{i} \Phi$ as well as $\mathbf{N} \cdot \Phi$ belong to $\Delta_{3}(\Phi) \subset \Delta_{3}$, the space of the immersion $M^{2} \hookrightarrow \mathbb{R}^{3}=\Delta_{3}(\Phi)$. The last formula means therefore

$$
\int_{M^{2}} G=3 \int_{M^{2}}\left\langle\mathbf{N}, \alpha_{3}\right\rangle^{2} G
$$

for the unit vector $\alpha_{3}=\mathrm{i} \Phi \in \Delta_{3}(\Phi)=\mathbb{R}^{3}$.

5. The spin formulation of the theory of surfaces in \mathbb{R}^{3}

An oriented, immersed surface $M^{2} \hookrightarrow \mathbb{R}^{3}$ inherits from \mathbb{R}^{3} an inner metric g, a spin structure and a solution φ of the Dirac equation

$$
D(\varphi)=H \varphi
$$

of constant length $|\varphi| \equiv 1$ where H denotes the mean curvature of the surface. The spinor field φ on M^{2} is the restriction of a parallel spinor field Φ of the Euclidean space \mathbb{R}^{3}. The period forms w^{φ} and Ω^{φ} are exact and the immersion $M^{2} \hookrightarrow \mathbb{R}^{3}$ is given by integration of the $\mathbb{R}^{1} \oplus \mathbb{C}=\mathbb{R}^{3}$ valued form ($w^{\varphi}, \Omega^{\varphi}$). At least locally the converse is true: Given an oriented, 2-dimensional Riemannian manifold (M^{2}, g) with a fixed spin structure and a solution of constant length of the Dirac equation $D(\varphi)=H \varphi$ for some smooth function $H: M^{2} \rightarrow \mathbb{R}^{1}$, there exists a symmetric endomorphism $E: T\left(M^{2}\right) \rightarrow T\left(M^{2}\right)$ such that $\varphi \in \mathcal{K}\left(M^{2}, g, E\right)$. Moreover, $2 E$ is the second fundamental form of an isometric immersion $\left(M^{2}, g\right) \rightarrow \mathbb{R}^{3}$. We formulate this description of the theory of surfaces in \mathbb{R}^{3} in the following

Theorem 13. Let $\left(M^{2}, g\right)$ be an oriented, 2-dimensional Riemannian manifold and H : $M^{2} \rightarrow \mathbb{R}^{1}$ a smooth function. Then there is a correspondence between the following data:

1. An isometric immersion $\left(\tilde{M}^{2}, g\right) \rightarrow \mathbb{R}^{3}$ of the universal covering \tilde{M}^{2} into the Euclidean space \mathbb{R}^{3} with mean curvature H.
2. A solution φ with constant length $|\varphi| \equiv 1$ of the Dirac equation $D(\varphi)=H \cdot \varphi$.
3. A pair (φ, E) consisting of a symmetric endomorphism E such that $\operatorname{Tr}(E)=-H$ and a spinor field φ satisfying the equation $\nabla_{X} \varphi=E(X) \cdot \varphi$.

We apply now the well-known formulas for the change of the Dirac operator under a conformal change of the metric. Suppose that $\tilde{g}=\sigma g$ are two conformally equivalent metrics on M^{2} where $\sigma: M^{2} \rightarrow(0, \infty)$ is a positive function. Denote by D and \tilde{D} the Dirac operator corresponding to the metric g and \tilde{g}, respectively. Then

$$
\tilde{D}(\varphi)=\sigma^{-3 / 4} D\left(\sigma^{1 / 4} \varphi\right)
$$

holds (see [2]). Let us consider a solution φ of the Dirac equation

$$
D(\varphi)=\lambda \varphi
$$

on (M^{2}, g) and suppose that φ never vanishes. We introduce the Riemannian metric $\tilde{g}=$ $|\varphi|^{4} g$ as well as the spinor field $\varphi^{*}=\varphi /|\varphi|$. Then we obtain

$$
\tilde{D}\left(\varphi^{*}\right)=\frac{\lambda}{|\varphi|^{2}} \varphi^{*}, \quad\left|\varphi^{*}\right| \equiv 1
$$

and thus an isometric immersion $\left(\tilde{M}^{2},|\varphi|^{4} g\right) \rightarrow \mathbb{R}^{3}$ with mean curvature $H=\lambda /|\varphi|^{2}$.
Theorem 14. Let $\left(M^{2}, g\right)$ be an oriented, 2-dimensional Riemannian manifold. Any spinor field φ without zeros that is a solution of the equation

$$
D(\varphi)=\lambda \varphi
$$

defines an isometric immersion $\left(\tilde{M}^{2},|\varphi|^{4} g\right) \hookrightarrow \mathbb{R}^{3}$ with mean curvature $H=\lambda /|\varphi|^{2}$.
Remark 15. Consider the case that $M^{2} \hookrightarrow S^{3}$ is a minimal surface in S^{3}. Let Φ be a real Killing spinor on S^{3}, i.e.

$$
\nabla_{\mathbf{T}}(\Phi)=\frac{1}{2} \mathbf{T} \cdot \Phi .
$$

The restriction $\varphi=\Phi_{\mid M^{2}}$ is an eigenspinor of the Dirac operator on M^{2} with constant length (Proposition 1). Therefore φ defines an isometric immersion of $\left(\tilde{M}^{2}, g\right) \hookrightarrow \mathbb{R}^{3}$ with mean curvature $H \equiv-1$. This transformation associates to any minimal surface $M^{2} \hookrightarrow S^{3}$ a surface of constant mean curvature $H \equiv-1$ in \mathbb{R}^{3}, a well-known construction (see [6]).

Remark 16. Using the described correspondence between isometric immersions of surfaces into \mathbb{R}^{3} and solutions of the Dirac equation $D(\varphi)=H \cdot \varphi$ one can immediately remark that several statements of the elementary theory of surfaces are equivalent to several statements concerning solutions of the twistor equation (see [2]). For example, in [7] (see also Proposition 8) one can find the following theorem: if $f: M^{2} \rightarrow \mathbb{R}^{1}$ is a real-valued function such that the equation

$$
\nabla_{\mathbf{T}}(\varphi)+\frac{1}{2} f \cdot \mathbf{T} \cdot \varphi=\mathbf{0}
$$

admits a non-trivial solution then f is constant and $f^{2}=G$. In the theory of surfaces this statement correspondends to the fact that an umbilic surface is a part of the sphere or the plane. Indeed, an umbilic surface $M^{2} \hookrightarrow \mathbb{R}^{3}$ admits a spinor field φ such that

$$
\nabla_{\mathbf{T}}(\varphi)+\frac{1}{2} H \mathbf{T} \cdot \varphi=0
$$

and therefore $H^{2}=G=$ const, i.e. the second fundamental form is proportional to the metric. In a similar way one can translate other facts of the theory of surfaces into properties of solutions of the equation $\nabla_{X} \varphi=E(X) \cdot \varphi$.

References

[1] C. Bär, Extrinsic bounds for eigenvalues of the Dirac operator, Ann. Glob. Anal. Geom., to appear.
[2] H. Baum, Th. Friedrich, R. Grunewald, I. Kath, Twistors and Killing spinors on Riemannian manifolds, Teubner, Leipzig, 1991.
[3] Th. Friedrich, Dirac-Operatoren in der Riemannschen Geometrie, Vieweg, Braunschweig, 1997.
[4] G. Kamberov, F. Pedit, U. Pinkall, Bonnet pairs and isothermic surfaces, Preprint dg-ga 9610006.
[5] R. Kussner, N. Schmitt, Representation of surfaces in space, Preprint dg-ga 9610005.
[6] H.B. Lawson, The global behaviour of minimal surfaces in S^{n}, Ann. Math. 92 (2) (1970) 224-237.
[7] A. Lichnerowicz, Spin manifolds, Killing spinors and universality of the Hijazi inequality, Lett. Math. Phys. 13 (1987) 331-344.
[8] J. Richter, Conformal maps of a Riemannian surface into the space of quaternions, Dissertation, TU, Berlin, 1997.
[9] A. Svec, Global Differential Geometry of Surfaces, Verlag der Wissenschaften, Berlin, 1981.
[10] I.A. Taimanov, Surfaces of revolution in terms of solutions, Ann. Glob. Anal. Geom. 15 (1997) 419-435.
[11] I.A. Taimanov, Modified Novikov-Veselov equation and differential geometry of surfaces, Transl. Amer. Math. Soc., Ser. 2179 (1997) 133-151.
[12] I.A. Taimanov, The WeierstraB representation of closed surfaces in \mathbb{R}^{3}, Preprint SFB 288, No. 291, TU, Berlin (1997) dg-ga 9710029.
[13] A. Trautman, Spinors and the Dirac operator on hypersurfaces I. General Theory, J. Math. Phys. 33 (1992) 4011-4019.
[14] A. Trautman, The Dirac operator on hypersurfaces, Acta Phys. Polon. B 26 (1995) 1283-1310.

[^0]: * Supported by the SFB 288 of the DFG.
 ${ }^{1}$ E-mail: friedric@mathematik.hu-berlin.de.

