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Abstract 

The aim of the present paper is to clarify the relationship between immersions of surfaces and 
solutions of the Dirac equation. The main idea leading to the description of a surface M2 by a spinor 
field is the observation that the restriction to M2 of any parallel spinor $ on Iw3 is a non-trivial 
spinor field on M2 of constant length which is a solution of the inhomogeneous Dirac equation. 
Vice versa, any solution of the equation O($) = H . p+ of constant length defines a symmetric 
endomorphism satisfying the Gauss- and Codazzi equations, i.e. an isometric immersion of M2 
into the 3-dimensional Euclidean space. 0 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

The Weierstrah formula describes a conformal minimal immersion of a Riemann surface 
M2 into the 3-dimensional Euclidean space Iw3. It expresses the immersion in terms of a 
holomorphic function g and a holomorphic l-form /_L as the integral 

f = Re (1 - g2, i(1 + g2), 2g)p 
> 

: M2 + R3. 
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On the other hand let us consider the spinor bundle S over M*. This 2dimensional vector 
bundle splits into 

Therefore the pair (g, ,u) can be considered as a spinor field (p on the Riemann surface. 
The Cauchy-Riemann equation for g and I_L is equivalent to the Dirac equation 

II((p) = 0. 

The choice of the Riemannian metric in the fixed conformal class of M* is not essential 
since the kernel of the Dirac operator is a conformal invariant. 

A similar description for an arbitrary surface M* c+ R3 is possible and has been pointed 
out probably for the first time by Eisenhardt (1909). This representation of any surface in 
R3 by a spinor field 40 on M* satisfying the Dirac equation 

involving the mean curvature H of the surface has been used again in some recent papers (see 
[5,8,1&12]). However, the mentioned authors describe the relationship between surfaces 
in R3 and solutions of Eq. (*) in local terms in order to get explicit formulas. The aim of 
the present paper is to clarify the mentioned representation of surfaces in R3 by solutions of 
the equation D(p) = Hq in a geomefricdy invariant way. It turns out that the main idea 
leading to the description of a surface by a spinor field v is simple: Consider an immersion 
M* c, R3 and fix a parallel spinor @ on R3. Then the restriction q = alM2 of @ to 
the surface is (with respect to the inner geometry of M*) a non-trivial spinor field on M* 
and defines a spinor q* of constant length which is a solution of the inhomogeneous Dirac 
equation 

D(cp*) = Hq". 

Conversely, given a solution q of Eq. (*) with constant length there exists a symmetric 
endomorphism E : T(M*) + T(M*) such that the spinor field satisfies a “twistor type 
equation” 

vxcp = E(X) - P. 

The resulting integrability conditions for the endomorphism E are exactly the Gaul3 and 
Codazzi equations. As a consequence, the solution (o of the Dirac equation 

D(p) = HP, lq~pl = const > 0 

yields an isometric immersion of M* into R3. In a similar way one obtains the description 
of conformal immersions using the well-known formula for the transformation of the Dirac 
operator under a conformal change of the metric (see [2]). 
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2. The Dirac operator of a surface immersed into a Riemannian 3-manifold 

Let Y3 be a 3-dimensional oriented Riemannian manifold with a fixed spin structure 
and denote by M2 an oriented surface isometrically immersed into Y3. Because the normal 
bundle of M2 is trivial, the spin structure of Y3 induces a spin structure on the Riemannian 
surface M2. The spinor bundle S of the 3-manifold Y 3 yields by restriction the spinor bundle 
of the surface M2. Over M2 this bundle decomposes into 

s = s+ @ s- 

where the subbundles S* are defined by (see [3]) 

S* = {q E S: i 9 el . e:! . (0 = hp}. 

Here (et , e2} denotes an oriented orthonormal frame in T ( M2) and X . cp means the Clifford 
multiplication of a spinor cp E S by a vector X E T(M2). Since in the 3-dimensional spin 
representation the relation 

ej .e2 =e3 

holds, we can replace the Clifford product et . e2 by the normal vector N of M2 L, Y’: 

S* = (cp E S : i. N . cp = 4~~0). 

Consider a spinor field @ defined on the 3-manifold Y3. Its restriction q = @,,,,,z is a spinor 
field defined on M2 and decomposes therefore into cp = cpf + cp- with 

cp+=i(q+iN.qp), (~-=~(~--iN.~0). 

We denote by Vy3 and VM2 the covariant derivatives in the spinor bundles on Y3 and M2 
respectively. For any vector X E T(M*) we have the well-known formula (see [2]) 

V;‘(Q) = V,“‘(q) - ;(VxN) . N . rp. 

The endomorphism X + (VxN) coincides with the second fundamental form 
II : T (M2) -+ T (M2) of the submanifold M* c-, Y3. Since II is symmetric the Clifford 
product et + II + e2 . II(e2) is a scalar and equals (-2H) where H denotes the mean 
curvature of the surface M2. The Dirac operator D of M2 defined by the formula 

D(v) = el . Vfq + e2 . VEzq 

can now be expressed by the covariant derivative Vy3 and the mean curvature vector: 

et . Vi’(@) + e2 . V;‘(G) = D(p) + H . N . cp. 

Suppose that the spinor field @ on Y3 is a real Killing spinor, i.e. there exists a number 
A E BB’ such that for any tangent vector T E T(Y3) the derivative of @ in the direction of 
T is given by the Clifford multiplication: 

V;‘(@)=h.T.@. 
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For the restriction p = @,*2 we obtain immediately the equation 

D(q) = -2hq - H . N . ~0. 

Using the decomposition p = pp++v- the last equation is equivalent to the pair of equations 

D(a+) = (-2h - iH)cp-, D(q-) = (-2h + iH)(p+. 

We discuss two special cases. 

Proposition 1. Let M2 be a minimal su$ace in Y3. Then the restriction q~ = QlM2 of any 

real Killing spinor @ on Y3 is an eigenspinor of constant length on the sur$ace M2: 

D(p) = -2hp. 

On the other hand, suppose that @ is a parallel spinor (A = 0) on Y3. Then we obtain 

D(+9+) = -iHp-, D((p-) = iHq+. 

If we introduce the spinor field (p* = qf - icp-, a simple calculation shows 

D(p*) = Hq*. 

The spinor field q* is given by 

~O*=~+ -iv- = $(q + i . N1 C+I) - ii(q - i . N . p) 

=f(l-i)lp+i(-l+i).N.q. 

Moreover, the length of co* is constant. This construction yields the following result. 

Proposition 2. Let @ be a parallel spinorjield defined on the 3-mantfold Y3 and denote 
by p = GIM2 its restriction to M2. Define the spinorfield @ on M2 by the formula 

q~* = $(l - i)(p + i(-1 + i) . N. ~II. 

Then q* is a spinorfield of constant length on M2 satisfying the Dirac equation 

D&J*) = Hqo* 

where H denotes the mean curvature. 

Remark 3. The map @ I--, PO* associating to any parallel spinor @ on Y3 a solution of 
the equation D(q*) = Hq* is injective. 

Remark 4. We can apply the above-mentioned formulas not only for Killing spinors. 
Indeed, for any spinor field @ we have 

Dy3(@) = D(p) + H . N . p + N . (V;‘@), 
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where D,3 is the Dirac operator of the 3-manifold Y3. Suppose there exists a function K : 

M2 + @ such that the normal derivative (Vi’ @) of the spinor field @ is described by K: 

(v&3@) = K@. 

Then we obtain 

D,j(O) = D(~J) + (H + K)N. cp. 

This formula (in arbitrary dimension) has been used for the calculation of the spectrum of 
the Dirac operator on hypersurfaces of the Euclidean space (see [ 1,13,14]). 

3. Solutions of the Dirac equation with potential on Riemannian surfaces 

Let (M2, g) be an oriented, 2-dimensional Riemannian manifold with spin structure. 
H : M2 + R’ denotes a given smooth, real-valued function defined on the surface. In this 
part we study spinor fields cp on M2 that are solutions of the differential equation 

If we decompose the spinor field into v = pO+ + cp- according to the splitting S = S+ 63 S- 
of the spinor bundle the equation we want to study is equivalent to the system 

D(cp+) = HP-, D(cp-) = Hq+. 

To any solution (p of this equation we associate two forms F+ defined for pairs X, Y E 
T(M2) of tangent vectors: 

F+(X, Y) = Re(Vxq’, Y. (~7 , F-(X, Y) = Re(Vxcp-, Y . c$). 

Proposition 5. 
(a) Fk are symmetric bilinear forms on T ( M2>. 
(b) ThetraceofFkisgivenbyTr(F+) = -HJ@f12. 

ProojI The symmetry of Fk is a consequence of the Dirac equation as well as the assumption 
that H is a real-valued function. Indeed, we have 

ReP,,(p’, w”-) = Re(el . V,,q’, el . e:! .cp-) 
= Re(Hq- - e2 . V,,$, el . e2 . cp-) 

= H 1 Re(q-, el . e2 . cp-> + Re(V,,(p’, e:! . el . e2 . cp-) 

= 0 + Re(V,,cp+, el . p-). 

Moreover, we calculate the trace of F*: 

Tr(Fd = Re(V,,Co*, el . p+I) + Re(V,,v*, e2. bo’) 
= -Re(D(v*), cp7) = -HlpofI12. 0 
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We study now special solutions of the equation D(a) = Hq, i.e. solutions with constant 
length ((~1 = const # 0. It may happen that the components q* have a non-empty zero set. 

Proposition 6. Suppose that the spinor$eld v dejned on the Riemannian sur$ace M2 is a 
solution of the equation 

D(q) = HP with Ivo( = const # 0. 

Then the forms F* are related by the equation 

(q+j*F+ = J(o-l*F_. 

ProojI In case one of the spinors pot or lp- vanishes at a fixed point mg E M* the relation 
between F+ and F_ is trivial. Otherwise there exists a neighbourhood V of the point 
mg E M* such that both spinors qf and VO- are not zero at any point m E V. The spinors 

et .40- e2sCo- 

Iv-l ’ - k-l 

are an orthonormal base in Sf with respect to the Euclidean scalar product Re(., e). Therefore 
we obtain (on V) 

Vxp+=Re 
el -PO- ) el.40~ 

VxpOf, - - 
Iv-l IFI 

+Re 

= &(F+(x, de, + F-t-(X, ede21. PO-. 

A similar calculation yields the formula 

v,q-- = l w{F-(X, et)et + F-(X, e&21 + P’. 

We multiply the equations by q+ and PO-, respectively, and sum up. Then we obtain 

~X(lp0+12 + lco-I*) = ReMX)p-, v”+>, 

where the endomorphism A : T (M*) + T (M*> is defined by 

A(X) = F+(X, el) F-(X, el> F+ (X7 4 F-(X, ed 
Iv-I2 - Iv+12 Iv-12 - (p+)2 I e2. 

Since Fi are symmetric tensors, the endomorphism A is symmetric too. Moreover, the trace 
of A vanishes: 

TrA = 
1 

-Tr(F+) - 
1 

lcp- I2 
-Tr(F_) = -H + H = 0. 
la+12 

The length of the spinor field q is constant. This implies 

Re(A(X) . (o-, qof) = 0. 
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At any point m E V of the set V the spinors y_~+, (p- are non-trivial. Then the rank of the 
endomorphisms A : T (M2) + T (M2) is not greater than 1. All in all, A is symmetric, 
Tr(A) = 0 and rg(A) ( 1, i.e. A = 0. 0 

We now consider the sum 

F=F++F_. 

At points with I,O+ # 0 (or cp- # 0) we have 

F F+ + F- (~~-~2/~~+~2 + l)F- F- -= 
1~1 I~+12 + I(p-12 = b+12 + Iv? =- 

as well as 

F F+ + F- (I+ l~+12/l~-12>F+ F+ -= 
16012 kJ+12 + 1~0-12 = b+12 + Iv-l2 =fl. 

The endomorphism E : T(M2) + T(M2) given by g(E(X), Y) = F(X, Y)/lq12 is 
defined at all points of M2 and the formulas derived in the proof of Proposition 6 in fact 
prove the following. 

Proposition 7. Let cp be a solution of the differential equation D(q) = Hq on a Riemannian 
suface (M2, g) with a real-valuedfunction H : M2 --+ [w’ . Suppose that the length 1~1 = 
const # 0 of the spinorfield CP is constant. Then 

g(E(X), Y> = $Re(Vcp. Y. cp) 

defines a symmetric endomorphism E : T(M2) -+ T(M2> such that 
(a) VX~+ = E(X). cp-, Vxcp- = E(X). cp+ 
(b) Tr(E) = -H. 

For a given triple (M 2, g , E) of a Riemannian surface and symmetric endomorphism the 
existence of a non-trivial solution cp of the equation 

VX(P = E(X). 40 

implies certain integrability conditions. It turns out that in this way we obtain precisely the 
well-known Gaul3 and Codazzi equations of the classical theory of surfaces in Euclidean 
3-space. 

Proposition 8. Let ( M2, g) be a 2-dimensional Riemannian surface with afixed spin struc- 
ture and suppose that E : T (M2) -+ T (M2) is a symmetric endomorphism. If there exists 
a non-trivial solution of the equation 

Vx(p = E(X). (D, X E T(M’) 
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then 
(a) (Codazzi equation): Vx(E(Y)) - Vy(E(X)) - E([X, Y]) = 0. 
(b) (Guz& equation): det(E) = $G, where G is the Gaussian curvuture of (M*, g). 

ProojI We prove the two equations in a way similar to the derivation of the integrability 
conditions for the Riemannian metric in case the space admits a Killing spinor (see [2]). 
We differentiate the equation 

vxlp = E(X). co 

and then we calculate the curvature tensor RS of the spinor bundle S: 

@(XT Y)P = VxVr~o - VYVXGO - V[X,YI~D 

= Ivx(EW)) - Vr(E(X)) - E([X, Yl) + E(Y)E(X) 
- E(X)EO’)l. ~0. 

On the other side, the curvature tensor RS : S + S is given by the formula 

@(el, e2) = i&212 el . e2, 

Denote by A(X, Y) the differential of E: 

A@, Y) = Vx(E(Y)) - VY (E(X)) - E([X, Yl). 

A simple algebraic calculation in the spin representation then leads to the equations 

-A(el, e2)q”- = 
R1212 

2det(E) + 2 
> 

iv+A(el, e2)qp+ 

Rl212 
= 2det(E) + 2 iv-, 

> 

where {el , ez} form an orthonormal basis consisting of eigenvectors of E. 
We multiply the first equation once by the vector A(X; Y): 

IIA(el, e2)11*~- = - 

andthenweconcludeA(X, Y) 5 O(Codazziequation)aswellasdet(E) = -iR1212 = 4G 
(Gaul3 equation). I3 

For a given triple (M*, g, E) consisting of a Riemannian spin surface (M*, g) and of a 
symmetric endomorphism E we will denote by K(M*, g, E) the space of all spinor fields 
9 satisfying the equation Vx(p = E(X) . cp. It is invariant under the quatemionic structure 
a! : S + S, i.e. K(M*, g, E) is a quatemionic vector space (see Section 4). Denote by 
(-H) the trace of E, 

Tr(E) = -H. 
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Then we have 

K(M2, g, E) c ker(D - H). 

In this part of the paper we proved that any spinor field 4p E ker( D - H) of constant length 
belongs to one of the subspaces K(M2, g, E) for a suitable symmetric endomorphism E, 
Tr(E) = -H. 

Finally, we consider the lengths 

L+ = Ilcp+l129 L- = 11~-112 

of a non-trivial solution p E K(M2, g, E). Using the integrability condition det( E) = i G 
(i.e. ](E(12 = H2 - i G) as well as the well-known formula D2 = A + i G for the square 

D2 of the Dirac operator we can derive formulas for A(L*): 

A(Ld = 2(A(v*), cp*) - 2(W*), WV*)) 

=W2@*L cp*> - 2 . llv~*ll~ - Wl1211~Fl12 

= 2 (Lk - L,) + 2e(grad(H) . cpF, cp*) 

In particular, if H = const is constant, the difference u = L+ - L_ satisfies the differ- 
ential equation 

A(u)=4 H2-; u. 
( > 

4. The period form of a spinor with Vxq = E(X) . cp 

We consider a spinor field cp on a Riemannian surface ( M2, g) such that 

Vxcp = E(X). bp 

for a fixed symmetric endomorphism E. The spinor bundle S carries a quaternionic structure 
o : S -+ S commuting with Clifford multiplication and interchanging the decomposition 
S = S+ @ S- (see [3]). For any spinor field cp = (p+ + cp- we define three l-forms 

by 

p(x) = 2(X . qJ+, v--)7 

am = w. cp+t dcp+h g!(X) = (X. v-3 cf((P_)>. 

t’p and !$$ are A ‘~“-forms, &Y’P is a A ‘3’ -form. Indeed, et . e:! acts on S+ (on S-) by 
multiplication by (-i) (by i). Now we obtain 

(*t’P)(et) = -tq(e2) = 2(-e2 . PO+, qO-> = (-ie2 . ei . e2 . q+, cp-> = -iCv(el>, 
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i.e. *cq = -i(p holds. A similar calculation gives & = -i.$ and @ = it!. We split 
the l-form [q into its real and imaginary part: 

t’p = We + ipLIo. 

Moreover, we introduce the 1 -form L?q 

Then we have: 

Proposition 9. Let (M2, g) be a Riemannian spin sugace and E : T(M2) -+ T(M2) 
a symmetric endomorphism of trace -H. Suppose the spinor field q is a solution of the 
equation Vxq = E(X) . cp. Then 
(a) dw” = 0. 
(b) d/P = 2H{Jq3-12 - 1q+12]dM2. 
(c) d&P’ = 0. 

Proo$ We calculate dw”: 

i duP’(X, Y) = X(Re(Y . pO+, qO-)) - Y(Re(X . v”+, yF)) - Re([X, Yl . cp+, PO-) 

= {SW, E(Y)) - g(K EW)>H~-12 
+ M-T E(Y)) - g(Yt .W>)M+12. 

Since E is symmetric, we obtain duP = 0. A similar calculation shows the formula for 
d@‘. For the proof of dJ2q = 0 we first remark that the quatemionic structure (L : S + S 
and the hermitian product (., .) on S are related by 

((Pit d(P2)) = -(cf((P1), 92). 

Using this formula we can transform d(‘D in the following way: 

dt!(X, Y) = (Ye E(X) . v+, 4~~)) + 0’. (P-, a(E(X) . P+)) 

-(X . E(Y) . P+, a((~-)) - (X . PO-, a(E(Y) . s+)) 

= -(o(Y . E(X) . tpf), cp-) - (E(X). Y . PO-, ~~(60’)) 

+(4X. E(Y). q+), (P-) + (E(Y). X. (0-3 +P+)) 

= -(E(X). Y. q--, a(~+)) - (E(X). Y . (p-, ti(p+)) 

+(E(Y) 9 X. p-9 a@+)) + (E(Y) . X . C, a@+)). 

On the other hand we calculate d6:: 

dC;(X, Y) = 0’. E(X). v-, a(~+)) + 0’. YJ+, a(E(X) * v-)1 

-(X . E(Y) . v-7 a(~+>) - Gf. v+, a(E(Y). 40-3) 

= V. E(X). 6, @PO+)) - (E(X) a Y. (P+, a((~->> 

-(A’. E(Y) . v-, a(~+)> + (E(Y) . X. PO’, u(p-)). 
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Finally we obtain 

do! - 6:)(X, Y) = -({E(X). Y + Y. E(Wb-, ~cP+)) 

+(IE(Y) . x + x. E(Y)K, 4cp’N 

= WE(X), Y> - g(E(Y), x>l(cp-, m+N 

and d(t? - CT) = 0 follows again by the symmetry of E. Cl 

Let us consider the case that (M2, g) is isometrically immersed into the Euclidean space 
R3, @ is a parallel spinor on Iw3 and the spinor field q* on M2 defined by the formula 

(p* = i(QjMz + i. N. QlM2) + ii(i . N. Q$,,2 - @,,+,z) 

(see Section 2). In this case the forms WV* and GP* are given by the expressions 

t#*(X) = -Im(X . @, @), P@*(X) = (X . @, a~(@)), 

and are exact l-forms. Indeed, we defined functions f : R” + R’ and g : lR3 + @ by 

f(m) = -Im(m . @, @), g(m) = (m . @, o(Q)) 

and then we have df = WV*, dg = ST*. We remark that f and g describe in fact the 
isometric immersion M2 c, [w3 we started with. The 3-dimensional spinor @ E A3 defines 
a real 3-dimensional subspace 43(o) by 

As(@) = (U E A3 : Re(q, @) = 0). 

The map q + (-Im(9, @), (@, a(@))) is an isometry between As(@) and Iw’ $@ = [w3. 
Clearly, the immersion M2 L, R3 is given by 

M2 3 m w m . @ E 43(Q), 

i.e. by the functions fi,,,,2 and g,,,,z. With respect to d(fiMz) = WV* and d(glM2) = Pf’* 
we obtain a formula for the isometric immersion M2 LS R3 : 

! (wv*, @‘*) : M2 + R3. 

(Weierstral3 representation of the surface.) 
In general, we call a solution p of the differential equation Vx~p = E(X) . q~ exact iff the 

corresponding forms WV, W’ are exact l-forms. Using the definition 

g(Hess (h)(X), Y) = i(g(Vx(grad(h)), Y) + g(X, Vr(grad(h)))J 

of the Hessian of a smooth function h defined on a Riemannian manifold we obtain the 
following result. 

Proposition 10. Let q~ E K(M2, g, E) be an exact solution of the d@erential equations 
Vxp = E(X) . q~ with df = WV, dg = 52”. Then 
(a) Hess(f) = 2 (1~~1~ - l~O-1~) E. 
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@I Igrad f12 = 41~“+121~-12. 
Cc) Hess(g) = -4(q-, cy(v+))E. 
Cd) bad( = (b0+12 - I~0-l~)~. 0 

In particular, the determinant of the Hessian of the function f is given by 

det(Hess (f)) = 4(]q+12 - ]p”-]2)2det(E) = (]qf12 - ]c+-]~)~G. 

Here we used Proposition 8, i.e. det(E) = :G. 

Corollary 11. Let M2 be a compact Riemannian spin-manifold and suppose that q E 
K(M2, g, E) is an exact, non-trivial solution. Then the spinors (p+ or qz- vanish at least at 
one point. Moreovel: there exists mg E M2 such that G(mo) > 0. 

Proo_f: At a maximum point mg E M2 of f we have 

grad(f)(mo) = 0, det(Hess(f)(mo)) > 0. 0 

Recall that for any 2-dimensional Riemannian manifold (M2, g) and any function h : 
M2 + Iw ’ the ‘L-form 

{2 det(Hess (h)) - ]grad(h)12G) dM* = dp’ 

is exact (see [9, p. 471). 
K(M2, g, E) we obtain 

Using this formula for h = f in case of an exact solution 40 E 

J (Ibp+12 - Iv-I~)~G = 2 
s 

l~+~2~q.-~2G. 

M2 M2 

Corollary 12. Let M2 be a compact Riemannian spin manifold and suppose that q E 
K(M2, g, E) is an exact solution. Then 

We again discuss the last formula in case of an isometrically immersed surface M2 of 
[w3 and a given parallel spinor @ on R3. We apply the integral formula to the spinor q* = 
pt + (p” where 

up; = i(@ +iN.@), ~0” = ii(-@ + i. N. @). 

In this case we have 

]q:]2 = ;]@I2 + i(iN. @, @), ]qT12 = ;]@I2 - $(iN. @, @) 

and (101 E 1) therefore 

1 - 6(~~]21qoT]2 = --$ + g(i. N. CD, cD)~. 
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Consequently, the integral formula yields 

/c=S/(iN@,@j’G. 

M2 M2 

The spinors i@ as well as N . @ belong to Aj(@) c Aj, the space of the immersion 
M2 L, R” = A3(@). The last formula means therefore 

/G=~/(N,cx~)~G 

M2 M2 

for the unit vector CX~ = i@ E As(@) = R3. 

5. The spin formulation of the theory of surfaces in R’” 

An oriented, immersed surface M2 L, R3 inherits from lR3 an inner metric g, a spin 
structure and a solution cp of the Dirac equation 

of constant length 1~1 = 1 where H denotes the mean curvature of the surface. The spinor 
field lp on M2 is the restriction of a parallel spinor field @ of the Euclidean space R”. The 
period forms 0 and Qq are exact and the immersion M2 c) Iw3 is given by integration 
of the R’ @ C = R3 valued form (IO’@, LP). At least locally the converse is true: Given 
an oriented, 2-dimensional Riemanman manifold ( M2, g) with a fixed spin structure and a 
solution of constant length of the Dirac equation D(q) = H~I for some smooth function 
H : M2 + IF!‘, there exists a symmetric endomorphism E : T(M2) -+ T(M2) such 
that (p E IC(M2, g, E). Moreover, 2 E is the second fundamental form of an isometric 
immersion ( M2, g) + Iw3. We formulate this description of the theory of surfaces in R” in 
the following 

Theorem 13. Let (M2, g) be an oriented, 2-dimensional Riemannian manifold and H : 
M2 + Iw ’ a smoothfunction. Then there is a correspondence between the following data: 
1. An isometric immersion (k2, g) -+ [w3 of the universal covering fi2 into the Euclidean 

space [w3 with mean curvature H. 
2. A solution q with constant length 1~1 = 1 of the Dirac equation D(p) = H q. 
3. A pair (CJJ, E) consisting of a symmetric endomorphism E such that Tr(E) = -H and 

a spinorfield cp satisfying the equation VX(P = E(X) . cp. 

We apply now the well-known formulas for the change of the Dirac operator under a 
conformal change of the metric. Suppose that g = erg are two conformally equivalent 
metrics on M2 where o : M2 + (0, 00) is a positive function. Denote by D and fi the 
Dirac operator corresponding to the metric g and j, respectively. Then 

D((p) = o -3/4D(a'/4v) 
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holds (see [2]). Let us consider a solution q of the Dirac equation 

on (M2, g) and suppose that q never vanishes. We introduce the Riemannian metric g = 
]q14g as well as the spinor field q* = q/]q]. Then we obtain 

and thus an isometric immersion (M2, 140 14g) + R3 with mean curvature H = h/]~]~. 

Theorem 14. Let (M2, g) be an oriented, 2-dimensional Riemannian manifold. Any spinor 
field q without zeros that is a solution of the equation 

defines an isometric immersion (fi2, Icp14g) c, /IX3 with mean curvature H = h/llp12. 

Remark 15. Consider the case that M2 L-, S3 is a minimal surface in S3. Let @ be a real 
Killing spinor on S3, i.e. 

VT(@) = ;T. #. 

The restriction v = QiM2 is an eigenspinor of the Dirac operator on M2 with constant 

length (Proposition 1). Therefore (p defines an isometric immersion of (fi2, g) c-, R3 with 
mean curvature H E - 1. This transformation associates to any minimal surface M2 L) S3 
a surface of constant mean curvature H E - 1 in R3, a well-known construction (see [6]). 

Remark 16. Using the described correspondence between isometric immersions of sur- 
faces into R3 and solutions of the Dirac equation D((p) = H . cp one can immediately 
remark that several statements of the elementary theory of surfaces are equivalent to several 
statements concerning solutions of the twistor equation (see [2]). For example, in [7] (see 
also Proposition 8) one can find the following theorem: if f : M2 + R’ is a real-valued 
function such that the equation 

VT((o) + if. T . (p = 0 

admits a non-trivial solution then f is constant and f2 = G. In the theory of surfaces this 
statement correspondends to the fact that an umbilic surface is a part of the sphere or the 
plane. Indeed, an umbilic surface M2 c-, [w3 admits a spinor field p such that 

and therefore H2 = G = const, i.e. the second fundamental form is proportional to the 
metric. In a similar way one can translate other facts of the theory of surfaces into properties 
of solutions of the equation Vxv = E(X) . cp. 
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